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Abstrac t  

A Petrov type III metric with nontwisting, degenerate Debever-Pearose direction is studied. 
This metric is, in general, a solution of the Einstein-Maxwell equations. Two particular 
cases are investigated in some detail. It is shown that the metric contains type N, conformally 
flat and flat metrics as special subcases. Among these subcases, we find the metric of plane 
gravitational waves and the Bertotti-Robinson solution. 

1. In troduct ion  

This w o r k  investigates a class o f  metr ics  o f  the fo rm 

ds 2 = 2e2~dzd~ + 2du(dv - ~du) (1.1) 

(signature: + + + - ) ,  where u and v are two  real coordinates ,  z is a comp lex  co- 
ordinate  (bars denote  complex  conjugat ion) ,  and ~ and ~ are two  real funct ions .  
W e s e t  G =  1 = c .  

Metrics o f  the  type  (1.1)  conta in  some interest ing solut ions o f  Eins te in-  
Maxwell  equat ions .  These solut ions are o f  Pet rov type  III, and contract  to  the  
type  N and then  to  the  conforrnal ly  flat space. In part icular ,  we ob ta in  a solut ion 
which  represents  a plane gravitat ional  wave in the  presence o f  a static electro-  
magnet ic  field. 

2. General Resul ts  

Some metr ics  which  describe gravitat ional  waves together  wi th  electromag- 
net ic  radiat ion are already known  (Zakharov,  1973). In this w o r k  we consider  
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the electromagnetic field of a static type, with the field tensor algebraically 
general; that is, it has two different real null eigenvectors. Now, suppose we 
orient one of  these eigenvectors along a Debever-Penrose (DP) vector (Debney 
et al., 1969); then, the following theorem can be proved (Plebafiski, 1974): if 
e 3 is a real eigenvector of  the (algebraically general) electromagnetic field and 
if it is also an at least triple Debever-Penrose vector, then F42 = 0, that is, e 3 
is geodesic, shearless, and without expansion or rotation. [Notations and con- 
ventions of Debney et al. (1969) are used throughout this paper.] The proof 
of this theorem follows from Bianchi identities and Maxwell equations and is 
similar to the Goldberg-Sachs (1969) theorem. Kundt (1961), working with 
F42 = 0, studied plane-fronted gravitational waves propagating in the direction 
e 3 . 

We will now consider solutions of the Einstein-Maxwell equations endowed 
with the property that one real eigenvector of the algebraically general electro- 
magnetic field is parallel to an (at least) triple Debever-Penrose vector. 

It turns out that the simple metric (1.1) provides solutions of this type. The 
natural null-tetrad associated to metric (1.1) is 

e I = eadz 

e 2 = e~di, 
(2.1) 

e 3 = d u  

e 4 = dv - M u  

and we choose e 3 as the distinguished null vector. Obviously 

ds 2 = 2ele 2 + 2eae 4 (2.2) 

The inverse of this tetrad, defined by e a = eaU 3 u, is 

31 = e - a 3 z  

32 = e-O~3~ 

03 = 3u + f3G 

0 4 = 3 u 

Now, from the first structure equations, de a = e n A pan,  and Fab = --Fba, 
one easily finds the independent connection forms Fab: 

P 1 2  + 1-'34 = -Ot, z d z  + a , ~ d f . -  ~ ,vdu 

P31 = -e%x,  u d i -  e-~[d,z du (2.4) 

P42 = 0 

(colons denote partial derivatives). Condition lP41 = 0 is a consequence of the 
theorem stated above, but it applies to the studied metric with the additional 
assumption that 

a, v = 0 (2 5)  
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Knowing Pab, we can now compute the tetrad components  of  the curvature 
tensor from Cartan's structure formulas: 

= l~a  c A e a (2.6) dpab + ['a n A Pn b "i 1~ bccte 

where Rabcd a r e  the tetradial components  of  the Riemann tensor. The final 
result is the following: if C (a) (a = 1 . . . .  , 5 )  are the usual five functions which 
describe con formal curvature and Rab a r e  the tetrad components of  the Ricci 
tensor, one finds 

C (s) = C (4) = C (3) = 0 (2.7a) 

C (2) = e - ~ z ( f i ,  v - a, u) (2.7b) 

C (I) = 2 az(e-aa/3, z) (2.7c) 

and the only nonzero components o f  Rab are 

R t 2 = -~3 vv = 2e-2~a, z~- = - R a 4  (2.8a) 

R31 = e-C~z(~,v + 0t,u ) = R3a (2.8b) 

R33 = 2(a,uu + ( a , u )  2 - e-2~/3,z~ -/3,vO~,u) (2.8c) 

Moreover, the Ricci tensor turns out to be traceless: 

R = 0 (2.9) 

[It also follows, directly from structure formulas (2.6), that,  if ]742 = 0 ,  the 
cosmological constant must vanish if one o f the DP vectors is (at least) triply 
degenerated.] 

Notice that  eq. (2.8a) and condition (2.5) imply that ~ is a second-order 
polynomial in v. Thus, we set 

(3=A(z,i,u)v 2 + B ( z , f , u ) v  + C ( z , e , u )  (2.10) 

Now, the Einstein-Maxwell equations, written in tensorial notation, are 

fuv;v = 0 =fuv;v (2.11) 

Ruv - ½g~vR = 8~rEuv (2.12) 

where fuu is the electromagnectic field tensor, 

47rEuv = - f u o f  f + ~guvfoc, f °°  (2.13) 

and the duality operation is defined by 

fur:  = ( i /2V_g)eUvoofo  a (g: = det itguvll) (2.14) 

The complex invariant o f  the electromagnetic field is 

~ =  ¼fury bw + ¼fur l  uv (2.15) 
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and we must have F 4= 0 if the field is algebraically general. Finally, the complex 
two-form of  the electromagnetic field is 

= ~(fuu +f**v)dxU A dx  v (2.16) 

and, if Maxwell equations without currents are satisfied, it must be closed, i.e., 

dco= 0 (2.17) 

The tetradial components of  the energy-momentum tensor, Eab, satisfy 
the algebraic relation 

E 12E33 - E31 E32 = 0 (2.18) 

If the Einstein equations (2.12) are satisfied, this last relation must also 
hold for Rab : 

R12R33 - R31R32 = 0 (2.19) 

This relation contains terms in v 2 , v, and without v. This gives three relations: 

AA,z~ - A , zA ,~  = 0 (2.20a) 

2A [B,z~ + 2Ae2%E,u] -A,zOz-(B + or, u) 

- A,  ZOz(B + c~, u) = 0 (2.20b) 

A [~, uu + (~,u)2 _ e-2C~C z~ - Ba, u ] 

+ ¼e-2C'Oz(B + C~,u) 0~(B + c~, u) = 0 (2.20c) 

From (2.20a) it follows that 

A = IQ(u, z)l 2 (2.21) 

and, using (2.8a), 

a, zY + IQt 2ezc~ = 0 (2.22) 

This is known as Liou~lle's equation (Goursat, 1923) and has a simple 
solution: 

tF, zl 2 
e2~= tQ[-2 2(i  +--iz IF----Iz)2 (2.23) 

where F = F(u, z) is an arbitrary function. 
To find a general solution of Eqs. (2.20) in a plausibly dosed form is 

rather difficult. However, some interesting particular solutions can be deter- 
mined; we will present two simple and plausible subcases in the following 
sections. 
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Let 

3. First Particular Solution 

A = IQI z =½1Fl 2 

B = 0  (3.1) 

c-- - (~  + ~) 

where F = F(z) is an holomorphic function of  z, with derivative F ' ,  and ~ = 
~ u ,  z). According to (2.23), we have 

e z'~ = 1/(1 +½ IF[2) z (3.2) 

and it is easy to see that (3.1) and (3.2) are particular solutions of (2.20). The 
metric has the form 

dsZ= 2dzd£/(l  + ~ t f l z ) +  2du[dv +(~+ ~ - ½ v Z t F ' [ Z ) d u ]  (3.3) 

the conformal curvature functions are 

C 0) = 2Oz [(1 + ½[FI z)Z(~F"F"v2 - 4~,z)] 

C (2) = (1 + ½ tFt 2)F"F 'v  (3.4) 

and the electromagnetic two-form is 

a~=ei~d + -~IFI 

Here, ~ represents the arbitrary phase o f  the duality rotations with precision 
up to  which Eu~, determines fuu. However, the Maxwell equations imply dco= 
0, and this condition is fulfilled if and only if 

~ = const (3.6) 

In the following, we set ~ = 0 without losing generality (i.e., we absorb it 
redefining F ~ Fe -iqJ ). Finally, the electromagnetic field invariant is simply 
given by 

= -½(F ' )  z (3.7) 

The functions F a n d  q~ are in general arbitrary, but some special subcases are 
of  interest: 

Subcase (a): F "  4: O. The metric is o f  type III, with an algebraically general 
electromagnetic field. 

Subease (b): (J, zz --/: 0 F = const. The metric has the form 

ds 2 = 2 d z d i  + 2du [dr + (~ + ~)du] (3.8) 

and all c(a) ' s  are zero, except 

C (1) = -2O,zz (3.9) 
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Thus, metric (3.8) is of type N. It is the well-known metric of a plane 
gravitational wave in vacuum (Robinson, 1956). 

Subcase (c):" F '  = const. ~ 0 and ~b, z 4= 0. The electromagnetic field invariant, 
~ i s  here constant and all the c(a)'s are zero, except 

C (1) = 2VZ3z[~,z(1 + ½F/7) 2] (3.10) 

Thus, in this particular case, the metric is of  type N, while the nontrivial 
electromagnetic field is algebraically general. 

Subcase (d): F '  = const  4= 0, ¢,z = 0. The metric is conformally flat and the 
electromagnetic field is homogeneous: f ~ ; v  = 0. This subcase is the Bertotti- 
Robinson solution (Bertotti, 1959). 

Subcase (e): Flat  space limit. Gaussian units can be restored in all the 
formulas given above by simply making the substitution 

F-+ ( x / G / e 2 ) F  

Rab -+ (C/c4)Rab (3.11) 

Transition to flat space is achieved by taking the limit G -+ 0 and setting O, zz = 
0 [see (3.4)]. The electromagnetic two-form reduces to 

co = d (F  d£  - F 'v  du)  (3.12) 

and the metric takes the form 

ds 2 = 2dz d i  + 2du [dv + (e) + ~ d u ]  

with the condition that 

= a(u)z + b(u) 

(3.13) 

(3.14) 

Metric (3.13) exhibits "spurious" gravitational waves; that is, they can be 
removed by a proper change of coordinates. For instance, i fa  = const and b = 
0 in (3.14), metric (3.13) can be transformed to 

ds 2 = 2d(z - ½au2)d(7, - 1flu2) 

+ 2du d[-½~a~u 3 + v + (aZ+ ffz)u] (3.15) 

which is obviously flat. Thus, subcase (e) is a special solution of Maxwell's 
equation in flat space, given in a somewhat unusual coordinate system. 

In conclusion, subcase (b) suggests that the metric (3.3), in its most general 
form, is a generalization of a metric describing plane gravitational waves when 
a static electromagnetic field is present. This electromagnetic field is not homo- 
geneous except in subcase (d). Finally, we saw that e 3 is at least a triple Debever- 
Penrose vector and at the same time one of the real eigenvectors of the algebrai- 
cally general electromagnetic field. If we define 

e 4 '  = e  4 +p e  1 +fie 2 - -p i le  3 (3.16) 
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then e 4' is the second eigenvector of  the electromagnetic field if 

p = -~(1 + ½ IFI 2)(F"/F')v (3.17) 

Similarly, if we set 

= -¼ c o) /c  (2) (3.18) 

e 4' amounts to the single Debever-Penrose vector of  the type iII. It can be 
shown that in neither case is e 4' geodesic. 

Let 

4. Second Particular Solution 

Q = const 4= 0 - + A  = IQI 2 = const =~0 (4.14) 

B = O~,u + H(u, z) + H(u, z-) (4.16) 

where H i s  an arbitrary function of  u and z, and C(u, z, z-) is any integral of  
the Poisso n equation: 

C,z£=e2~[equu - a , u ( H + / 7 / ) ]  +(1/4A)laz(2a, u +H)I  2 (4.1c) 

Formulas (4.1) de fne  another particular solution o f  Eqs. (2.20). The metric 
takes the form 

ds 2 IQI -z [F zl 2dzd£ 
= ' l IF 2~2 + 2du(dv - 3du) (4.2) (1 +~ ) 

where F = F(u, z) is an arbitrary function and 3 is defined by (2.10) and (4.1). 
The conformal curvature functions, c(a), which are different from zero are 

cO~ = 2aAe-2~[(~ uz +Hz)~  + c,z] ) 

C (2) = e - ~ H  z (4.3) 

and the form of  the electromagnetic field is 

co = (e i~ /x/2Q)d[2a, zdz - (2Av + H)du] (4.4) 

F = - A  

[The same comment  as after (3.5) applies to ff in this last equation; in this 
case, we can absorb t) by  redefining Q -+ Qe -2iqj ). It can be shown that this 
electromagnetic field is homogeneous along direction e 4, i.e., 

e4~fa~;~ = 0 (4.5) 

It is clear from (4.3) that  the metric is o f  type III  if  H,z 4= 0 and, corre- 
spondingly, CO) 4= 0 or CO) = 0). The transition to flat space can be achieved 
by  setting, in (4.2), 

IQ 12 -~ (G/c 4) IQ 12 , A ~ (G/c4)A 

--> (G/c4)Av 2, F-+ (X/~/c2)F (4.6) 
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and then taking the limit G -+ 0. One obtains a solution of  Maxwell equations 
in flat space. The electromagnetic form is 

eo = x / 2 a e i ~  d ( l  z d f  - v du) (4.7) 

As in the previous case, we can define e 4' as in (3.16); then, if 

p - (1/8vC2Q)e-'~az(2au + 1-1) (4.8) 

e 4' is the second eigenvector o f  the electromagnetic field, and, if p is as in (3.18) 
but with CO) and C (2) given by (4.3), e 4' is the single Debever-Penrose vector. 
Again, in neither case is e 4 geodesic. 

5. Final Remarks  

We can now sum up the results obtained. Metric (1.1) is of  type III and 
contains type N, conformally flat, and flat metrics as special subcases. This 
can be interpreted as a contraction scheme along the line of  null gravitational 
invariants in Penrose's diagram. Schematically we have 

[flat] +- [ - I  +- [4] +- [3-1] 

in the notation of Penrose (1960). 
It is clear from the study of  the two particular solutions given above that, 

in general, the single Debever-Penrose vector is not parallel to an eigenvector of  
the electromagnetic field. This, in fact is a general feature: it can be shown, 
after some lengthy algebra, that no type III solution of  Einstein-Maxwell 
equations exists such that both  Debever-Penrose vectors are parallel to the 
two eigenvectors o f  the electromagnetic field. 
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