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Abstract

A Petrov type III metric with nontwisting, degenerate Debever-Penrose direction is studied.
This metric is, in general, a solution of the Einstein-Maxwell equations. Two particular

cases are investigated in some detail. It is shown that the metric contains type N, conformalily
flat and flat metrics as special subcases. Among these subcases, we find the metric of plane
gravitational waves and the Bertotti-Robinson solution.

1. Introduction

This work investigates a class of metrics of the form
ds? = 2e2dzdz + 2du(dv — fdu) (1.1)

(signature: +++-), where u and v are two real coordinates, z is a complex co-
ordinate (bars denote complex conjugation), and « and § are two real functions.
Weset G =1 =c.

Metrics of the type {1.1) contain some interesting solutions of Einstein-
Maxwell equations. These solutions are of Petrov type H1, and contract to the
type V and then to the conformally flat space. In particular, we obtain a solution
which represents a plane gravitational wave in the presence of a static electro-
magnetic field.

2. General Results

Some metrics which describe gravitational waves together with electromag-
netic radiation are already known (Zakharov, 1973). In this work we consider
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ihe electromagnetic field of a static type, with the field tensor algebraically
general; that is, it has two different real null eigenvectors. Now, suppose we
orient one of these eigenvectors along a Debever-Penrose (DP) vector (Debney
et al., 1969); then, the following theorem can be proved (Plebafiski, 1974): if
€3 is a real eigenvector of the (algebraically general) electromagnetic field and
if it is also an at least triple Debever-Penrose vector, then I'y, = 0, that is, €3
is geodesic, shearless, and without expansion or rotation. [Notations and con-
ventions of Debney et al. (1969) are used throughout this paper.] The proof
of this theorem follows from Bianchi identities and Maxwell equations and is
similar to the Goldberg-Sachs (1969) theorem. Kundt (1961), working with
Iy, = 0, studied plane-fronted gravitational waves propagating in the direction
e3.

We will now consider solutions of the Einstein~-Maxwell equations endowed
with the property that one real eigenvector of the algebraically general electro-
magnetic field is parallel to an (at least) triple Debever-Penrose vector.

It turns out that the simple metric (1.1) provides solutions of this type. The
natural null-tetrad associated to metric (1.1) is

el =e%dz
e? =e%dz
e =du
e* =dv — fdu
and we choose e3 as the distinguished null vector. Obviously
ds? =2ele? + 2¢3e* (2.2)
The inverse of this tetrad, defined by e? = ¢ * 9, is
3; =e %3,
3, =e7%9;
93 =9, + 00,
9q =0y

Now, from the first structure equations, de? = e” AT, and Ty = —Tpy,
one easily finds the independent connection forms I'yp:

@1

Py + T34 = —0 ,dz + @ 3dz — 8 ,du
[y = —e%a ,dz —e B, du 2.9
P42 =0

(colons denote partial derivatives). Condition I'4, = 0 is a consequence of the
theorem stated above, but it applies to the studied metric with the additional
assumption that

@,=0 (2.5

k]
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Knowing I'yp, we can now compute the tetrad components of the curvature
tensor from Cartan’s structure formulas:

dr%, + % AT, = $R%, qe¢ Nef (2.6)
where R%,.4 are the tetradial components of the Riemann tensor. The final
result is the following: if C@ (g =1, .. ., 5) are the usual five functions which

describe conformal curvature and R, are the tetrad components of the Ricci
tensor, one finds

B = c@® =00 = (2.7a)
CP=e78,(8,, — ) (2.7b)
CW=2p,(e7%8 ,) (2.7¢)
and the only nonzero components of R, are
Ryp=—Buw=2¢"% ,=—R34 (2.8a)
Ry =e™3,(8,, +,.) = Ry (2.8b)

Rj33= 2(“,324 +(a,u)2 - e_zaﬁ,zi - B,va,u) (2.8¢)
Moreover, the Ricci tensor turns out to be traceless:
R=0 2.9)

{1t also follows, directly from structure formulas (2.6), that, if I'4, = 0, the
cosmological constant must vanish if one of the DP vectors is (at least) triply
degenerated.]

Notice that eq. (2.82) and condition (2.5) imply that § is a second-order
polynomial in v. Thus, we set

B=A(z, z,u)v? + Bz, 7, v + ((z, Z, u) (2.10)

Now, the Einstein-Maxwell equations, written in tensorial notation, are

™, =0=7, 2.11)
Ry — 38uwR = 82, (2.12)
where [ 18 the electromagnectic field tensor,
AMEyy = ~fupl s+ h8uloo f°° 213)
and the duality operation is defined by
1= (127 -8) "% o (g2 = det ligll) (2.14)

The complex invariant of the electromagnetic field is

F = 5 F o™ + 5l (2.15)
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and we must have ' # 0 if the field is algebraically general. Finally, the complex
two-form of the electromagnetic field is

w= ‘li(fp.v +fpv)dxﬂ Adx” (2.16)
and, if Maxwell equations without currents are satisfied, it must be closed, i.e.,
dw=0 2.17)

The tetradial components of the energy-momentum tensor, £,,, satisfy
the algebraic relation

E\3E33 —E31E3,=0 (2.18)

If the Einstein equations (2.12) are satisfied, this last relation must also
hold for R,p:

Ry;R33 —R3;R3,=0 (2.19)

2

This relation contains terms in v*, v, and without v. This gives three relations:

AA ,;—A A ;=0 (2.202)
24|B .5 +24e*a ] — A 3B +a,)
—A 0,(B+a,)=0 (2.20b)
Aleyy +(0,,)* —e72%C 17 — Ba ]
+5e729,B+a,)0;(B+a,)=0 (2.20¢)
From (2.20a) it follows that
A=10(u, 2)|? (2.21)
and, using (2.8a),
a,;+101%** =0 (2.22)

This is known as Liouville’s equation (Goursat, 1923) and has a simple
solution:

[F 12

2 -2 —
e [Ql 2(1+‘12‘|F|2)2

(2.23)

where F'= F(u, z) is an arbitrary function.

To find a general solution of Eqs. (2.20) in a plausibly closed form is
rather difficult. However, some interesting particuiar solutions can be deter-
mined; we will present two simple and plausible subcases in the following
sections.
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3. First Particular Solution

Let
A=101*=4IF?
B=0 (3.1)
C=—(¢+9)

where F = F(z) is an holomorphic function of z, with derivative F’, and ¢ =
o(u, z). According to (2.23), we have

e =1/(1 +1|F|?)? (3.2)

and it is easy to see that (3.1) and (3.2) are particular solutions of (2.20). The
metric has the form

ds? = 2dzdz[(1 + SIF1D) + 2duldv + (0 + $ — 3021 F'12)du]  (3.3)
the conformal curvature functions are

C =20, [(1 + 3122 GFFv? — ¢,,)]

— 34
CP =1 +3FIHFF'v G
and the electromagnetic two-form is
i — r
w:e"’/d(i‘rwdz ~deu> (3.5)

Here, i represents the arbitrary phase of the duality rotations with precision
up to which E,,,, determines f,,,. However, the Maxwell equations imply dw =
0, and this condition is fulfilled if and only if

Y = const (3.6)

In the following, we set Y = 0 without losing generality (i.e., we absorb it
redefining F — Fe %), Finally, the electromagnetic field invariant is simply
given by

F = —5(F') 3.7

The functions F and ¢ are in general arbitrary, but some special subcases are
of interest:

Subcase (a): F” # 0. The metric is of type III, with an algebraically general
electromagnetic field.

Subcase (b): ¢ ;, # 0 F = const. The metric has the form

ds* = 2dzdz + 2du[dv + (¢ + §)du] (3.8)
and all C®s are zero, except

C(I) = "’2¢,zz (39)
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Thus, metric (3.8) is of type V. It is the well-known metric of a plane
gravitational wave in vacuum (Robinson, 1956).

Subcase (c): F' = const. + 0 and ¢, , # 0. The electromagnetic field invariant,
& is here constant and all the C4)’s are zero, except

CW = 252, [¢ (1 + 3FF)?] (3.10)

Thus, in this particular case, the metric is of type N, while the nontrivial
electromagnetic field is algebraically general.

Subcase (d): F' = const # 0, ¢,, = 0. The metric is conformally flat and the
electromagnetic field is homogeneous: f,4., = 0. This subcase is the Bertotti-
Robinson solution (Bertotti, 1959).

Subcase (e): Flat space limit. Gaussian units can be restored in all the
formulas given above by simply making the substitution

F~(G[*)F

Rap > (GIcMRyp @10

Transition to flat space is achieved by taking the limit G - 0 and setting ¢ ,, =
0 [see (3.4)]. The electromagnetic two-form reduces to

w=d(Fdz — F'vdu) (3.12)
and the metric takes the form

ds® = 2dz dz + 2duldv + (¢ + §)du] (3.13)
with the condition that

¢ =a(wz + b(u) @14

Metric (3.13) exhibits “spurious” gravitational waves; that is, they can be
removed by a proper change of coordinates. For instance, if ¢ = const and b =
0in (3.14), metric (3.13) can be transformed to

ds? = 2d(z — 3au®)d(z — Sau?)
+2du d[-Laau® +v + (@7 + az)u) (3.15)

which is obviously flat. Thus, subcase (e) is a special solution of Maxwell’s
equation in flat space, given in a somewhat unusual coordinate system.

In conclusion, subcase (b) suggests that the metric (3.3), in its most general
form, is a generalization of a metric describing plane gravitational waves when
a static electromagnetic field is present. This electromagnetic field is not homo-
geneous except in subcase (d). Finally, we saw that e is at least a triple Debever-
Penrose vector and at the same time one of the real eigenvectors of the algebrai-
cally general electromagnetic field. If we define

e =e* + pel + pe? — ppe’ (3.16)



TYPE III SOLUTIONS OF EINSTEIN-MAXWELL EQUATIONS 325
then e# is the second eigenvector of the electromagnetic field if
p =501 +5FI*)F"[F (.17
Similarly, if we set
o=—4% cWic@ (3.18)

¢4 amounts to the single Debever-Penrose vector of the type 111. It can be
shown that in neither case is ¢4 geodesic.

4. Second Particular Solution
Let
Q =const #0 >4 =|Q|* = const #0 (4.1a)
B=a, +H(u,z)+Hu,z) (4.16)

where H is an arbitrary function of u and z, and (u, z, ) is any integral of
the Poisson equation:

27 = [0y — 0, (H + H)] +(1/44)10, Qe + B (410)

Formulas (4.1) define another particular solution of Eqgs. (2.20). The metric
takes the form

- |F |*dzd
(1 +31F|%)?

where F'= F(u, z) is an arbitrary function and § is defined by (2.10) and (4.1).

The conformal curvature functions, C(#), which are different from zero are

CM) =23, {62 (0, e + H )v + C,21}

ds* = |Q| + 2du(dv — Bdu) 4.2)

@ = oy 4.3)
and the form of the electromagnetic field is

w=(e" /\/Q@)d[m,zdz — (2Av + H)du] 4.4)

F=—A4

[The same comment as after (3.5) applies to Y in this last equation; in this
case, we can absorb ¥ by redefining Q - Qe~?¥ ). It can be shown that this
electromagnetic field is homogeneous along direction e4, ie.,

e*f, ap;u =0 4.5)

It is clear from (4.3) that the metric is of type IIl if H ; # 0 and, corre-
spondingly, C) # 0 or C() = 0). The transition to flat space can be achieved
by setting, in (4.2),

Q1% = (GIcMIQ1?, 4~ (GlchHA

B (GlchHAv?, F->(GlcAHF (4.6)
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and then taking the limit G — 0. One obtains a solution of Maxwell equations
in flat space. The electromagnetic form is

w=20eVd(z dz — v du) %))
As in the previous case, we can define e# asin (3.16); then, if
p=(1/8V2Q)e ™0, (20, + H) @.8)

%' is the second eigenvector of the electromagnetic field, and, if p is as in (3.18)
but with C) and C®) given by (4.3), e* is the single Debever-Penrose vector.
Again, in neither case is ¥ geodesic.

5. Final Remarks

We can now sum up the results obtained. Metric (1.1) is of type III and
contains type &V, conformally flat, and flat metrics as special subcases. This
can be interpreted as a contraction scheme along the line of null gravitational
invariants in Penrose’s diagram. Schematically we have

[flat] <[] « [4] «[3-1]

in the notation of Penrose (1960).

It is clear from the study of the two particular solutions given above that,
in general, the single Debever-Penrose vector is not parallel to an eigenvector of
the electromagnetic field. This, in fact is a general feature: it can be shown,
after some lengthy algebra, that no type I1l solution of Einstein-Maxwell
equations exists such that both Debever-Penrose vectors are parallel to the
two eigenvectors of the electromagnetic field.
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